

Precise form measurement Geometrical tolerancing in practice

Tolerance frame


## Toleranced elements

Indicating arrow to contour line or subsidiary line (offset from dimension line): if the tolerance refers to the line or area.

Indicating arrow as an extension of the dimension line: if the tolerance applies for the axis or median plane or a point of the element.


## Datums

Datum triangle with datum letters
on the contour line of the element or on the subsidiary line:
if the displayed datum is a line or area. as an extension of the dimension line: if the datum is the axis, the median plane or an appropriately dimensioned point.


Restriction of the datum to an area of the element as a dot-dash line with dimensioning.



A filled in or empty datum triangle has the same meaning.


## Straightness


$\square$ Roundness
The tolerance zone is

limited by two concentric circles at a distance t apart. The circumference line of the toleranced cylinder must be within a circle ring of the zone width t , in every radial

Example


The circumference line of the toleranced cylinder must be within a circle ring of the zone width 0.1 in every radial section plane.

## Flatness



The tolerance zone is limited by two parallel planes at a distance $t$ apart, the dimensions of which correspond to those of the toleranced area. The real workpiece area must be between the two parallel planes at distance t apart.

Example The real workpiece area must be between two parallel planes at a distance apart of 0.2 .

The tolerance zone for the cylinder envelope area limits the deviation of the roundness, the straightness of the envelope line and the parallelism of the envelope line to the cylinder axis. It is formed by two coaxial cylinders with the radial distance t .

Example


The toleranced cylindrical area must be between two coaxial cylinders with a radial distance of 0.1.

## Parallelism



The tolerance zone within which the envelope lines of the toleranced cylinder must lie is limited by two parallel lines at a distance t apart which run parallel to the datum plane


Every single envelope line of the toleranced area must be between two parallel lines that are at a distance of 0.1 apart, and are parallel to the center axis.

## Perpendicularity



The tolerance zone is limited by two parallel planes at a distance $t$ apart, which are perpendicular to the datum axis. The toleranced plane face must be between these two planes.


All points/circle lines of the toleranced area must be between two parallel planes that are at a distance of 0.1 apart, and are perpendicular to the datum plane.

Angularity


The tolerance zone is limited by two parallel planes at a distance $t$ apart at the nominal angle to the datum axis.


All points of the toleranced area must be between two parallel planes that are at a distance apart of 0.1, and are angled at $20^{\circ}$ to the datum axis.


The tolerance zone is limited by a cylinder of diameter $t$, the axis of which matches the datum axis. The actual axis of the toleranced element must be within the tolerance zone.

Example


The axis of the toleranced cylinder must be within a cylinder that has a diameter of 0.1 and is coaxial to the datum axis A .


## Axial run-out



The tolerance zone is limited in every radial distance of two circles at a distance $t$ apart. The circles are in a cylinder, the axis of which matches the datum axis. The diameter of the cylinder can adopt any value of the diameter of the plane face.

| Example | Every circle line of <br> the toleranced area <br> must be between two <br> parallel circle planes |
| :--- | :--- |
| at a distance apart of |  |

## Total radial run-out

The tolerance zone is
 limited by two coaxial cylinders at a distance $t$ apart, the axes of which match the datum axis. After several rotations around the datum axis and axial shift of the transducer all points of the toleranced element

Example The toleranced cylindrical area must be between two coaxial cylinders with a radial distance apart of 0.1 with their common axis on the datum axis.
must be within the tolerance zone.


## $\$$ Total axial run-out



The tolerance zone is limited by two parallel planes at a distance $t$ apart, which are perpendicular to the datum (rotational) axis. After several rotations around the datum axis and radial shift of the transducer, all points of the surface of the tolerance plane face must be within the tolerance zone.

Example


The toleranced area must be between two parallel circle planes at a distance apart of 0.1 with their common center point on the datum axis $A$.

## We assist you worldwide.

Our qualified employees are available to assist you across the globe. We have subsidiaries and distribution partners in key industrial nations, meaning that we are always close by to offer you optimum support as a reliable partner.


Visit us on YouTube.

## Evaluation method

Effect and function of different evaluation methods on the roundness evaluation.


LSCI
Least Square Circle
Circle through the roundness profile with minimum sum of profile deviation squares.
Individual profile peaks influence the center point only a little. Very suitable for stable datum formation.

## MICl



Maximum Inscribed Circle
Maximum circle inscribed in the roundness profile for inside areas.

The method is used for form measurement of the inside diameter.


## MCCl <br> Minimum Circumscribed Circle

Minimum circle circumscribing the roundness profile for outside areas.

The method is used for form measurement of the outside diameter.

## Filtering method

Definition according to ISO 11562 or ISO 16610-21 for roughness and form measurement.

Filter characteristic: Gaussian amplitude transmission function
Amplitude damping
at cut-off $\lambda c$ :
$50 \%$

| Number of points <br> per wave: | Specification of cut-off in $\mathrm{w} / \mathrm{r}$ (waves/revolution). 7 points <br> per wave must <br> be selected. |
| :--- | :--- |
| Roundness <br> measurement: <br> Recommended <br> The specification is independent of the workpiece diameter. <br> Conversion of $w / r$ <br> to wavelength: | $\mathbf{1 5}=50,150,500 \mathrm{w} / \mathrm{D} \times 3.14 /$ number of cut-offs |

Straightness

| measurement: | Specification of cut-off in mm |
| :--- | :--- |
| Recommended cut-offs: | $0.25 ; 0.8 ; 2.5 ; 8.0 \mathrm{~mm}$ |

## Standards of practical relevance

For measurement of roundness, straightness and flatness

| ISO 1101 | Geometrical Product Specifications (GPS) - Geometrical toleran cing - Tolerances of form, orientation, location and run-out |
| :---: | :---: |
| ISO 12180-1 | Geometrical Product Specifications (GPS), Cylindricity - Part 1 Vocabulary and parameters of cylindricity |
| ISO 12181-1 | Geometrical Product Specifications (GPS), Roundness - Part 1 Vocabulary and parameters of roundness |
| ISO 12780-1 | Geometrical Product Specifications (GPS), Straightness - Part 1 Vocabulary and parameters of straightness |
| ISO 12781-1 | Geometrical Product Specifications (GPS), Flatness - Part 1 Vocabulary and parameters of flatness |
| VDINDE 2631 Sheet 1 | Form measurement - Basic principals of the determination of form and positional deviations |
| VDINDE 2631 Sheet 2 | Form measurement - Determination of the sensitivity of the signal transmittal chain |
| VDI/VDE 2631 Sheet 3 | Filer characteristics and selection |

## Filter stages

Filter effect of different cut-off numbers on the roundness result. Gauss filter 50 \%.


Filter 150 W/R

$1.04 \mu \mathrm{~m}$
RONt $(\mathrm{MZCl})=1.04 \mu \mathrm{~m}$


Filter 50 W/R
$\square$ $0.91 \mu \mathrm{~m}$
RONt $(\mathrm{MZCl})=0.91 \mu \mathrm{~m}$


Filter 15 W/R

$0.71 \mu \mathrm{~m}$
$\operatorname{RONt}(\mathrm{MZCI})=0.71 \mu \mathrm{~m}$

## Tolerances of form, orientation, location and run-out according to ISO 1101

Standardized tolerance specifications determine tolerance zones within which the toleranced elements (line, area, point, axis, median plane) of the workpiece must lie.
Form tolerance refers to the tolerance zone that limits the deviation of a form element from its ideal geometry (straightness, flatness, roundness, cylindricity) and is orientated exclusively to the toleranced element. Only the tolerances for profile any line and profile any surface require theoretically exact dimension specifications and datums.
Orientation tolerance refers to a tolerance zone with which the deviation from the general direction (parallelism, perpendicularity, angularity) between the toleranced element and the datum and form deviation of the toleranced element is limited.
Location tolerance refers to the tolerance zone which limits the deviation of the toleranced element (position, coaxiality, concentricity, symmetry) from its ideal geometrical location, which must be defined clearly by a datum or a system of datums.
Run-out tolerance refers to a tolerance zone which limits the form and position deviations of envelope areas or plane faces in relation to the rotational axis.

## General tolerances according to ISO 2768 part 2

For workpieces produced by cutting
All dimensions in mm
Tolerance class H

| Nominal dimensional range | ... 10 | $\begin{array}{r} >10 \\ \text {... } 30 \end{array}$ | $\begin{aligned} & >30 \\ & \text {... } 100 \end{aligned}$ | $\begin{aligned} & >100 \\ & \text {... } 300 \end{aligned}$ | $\begin{aligned} & >300 \\ & . . .1000 \end{aligned}$ | $\begin{aligned} & >1000 \\ & \ldots \\ & \ldots \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square \square$ | 0.02 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 |
| $\perp$ |  | 0.2 |  | 0.3 | 0.4 | 0.5 |
| $\equiv$ | 0.5 |  |  |  |  |  |
| $\nearrow$ | 0.1 |  |  |  |  |  |

Tolerance class K

| Nominal dimensional range | ... 10 | $\begin{array}{r} >10 \\ \text {... } 30 \end{array}$ | $\begin{aligned} & >30 \\ & \text {... } 100 \end{aligned}$ | $\begin{aligned} & >100 \\ & > \\ & \text {... } 300 \end{aligned}$ | $\begin{aligned} & >300 \\ & \ldots 1000 \end{aligned}$ | $\begin{aligned} & >1000 \\ & \text { > } 3000 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square \square$ | 0.05 | 0.1 | 0.2 | 0.4 | 0.6 | 0.8 |
| $\pm$ |  | 0.4 |  | 0.6 | 0.8 | 1.0 |
| $\equiv$ |  |  | 0.6 |  | 0.8 | 1.0 |
| $\nearrow$ |  | 0.2 |  |  |  |  |

Tolerance class L

| Nominal dimensional range | ... 10 | $\begin{array}{r} >10 \\ \text {... } 30 \end{array}$ | $\begin{aligned} & >30 \\ & \ldots .100 \\ & \hline \end{aligned}$ | $\begin{aligned} & >100 \\ & \ldots \\ & \ldots \end{aligned}$ | $\begin{aligned} & >300 \\ & \ldots . .1000 \\ & \hline \end{aligned}$ | $\begin{aligned} & > \\ & \\ & \ldots \\ & \ldots \end{aligned} 00000$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square \square$ | 0.1 | 0.2 | 0.4 | 0.8 | 1.2 | 1.6 |
| $\perp$ |  | 0.6 |  | 1.0 | 1.5 | 2.0 |
| $\equiv$ |  | 0.6 |  | 1.0 | 1.5 | 2.0 |
| $\nearrow$ |  |  | 0.5 |  |  |  |

Tolerance value corresponds to the diameter tolerance or maximum general tolerance for the radial run-out.Tolerance value corresponds to the maximum value in comparison of the dimension tolerance of the distance dimension with the general tolerance for the straightness or the flatness of the form elements being inspected.

